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Abstract. The existence of a general class of similar solutions of the diffusion equation is 
demonstrated, when the boundary conditions vary as a simple power of time, and the 
transport coefficient varies non-linearly as a power of the concentration. Although earlier 
workers have described specific exact solutions, which are members of this class, the class as 
a whole has not previously been investigated. These exact solutions, and one previously 
unreported, are described briefly. A simple method is given for the numerical integration of 
the characteristic differential equation of the profile for the case when an exact solution is 
not available. 

The use of these solutions in studies of laser interaction with solid targets, and as test 
problems for thermal conduction routines, is briefly discussed. 

1. Introduction 

The dominant role of thermal conduction in the early stages of laser interaction with 
solid targets is widely appreciated (Babuel-Peyrissac et a1 1969, Caruso and Gratton 
1969, Saltzmann 1973, Pert 1974). Unfortunately, in these applications the thermal 
conductivity is non-linear being a strong function of the temperature of the conducting 
bodies (usually electrons). In general the inclusion of this non-linearity greatly restricts 
the number of analytical solutions which can be found. In this paper we present a 
general class of self-similar solutions to the problem of heat conduction by a medium 
with non-linear conductivity, which have relevance to the early stages of laser-plasma 
heating phenomena. 

Similarity solutions for the diffusion equation have been widely investigated and 
some general methods (Ames 1965, 1972) are available. Many of these (Philip 1960) 
make use of the well known Boltzmann transformation (Crank 1975) in which the 
similarity is expressed in terms of the variable x /  Jt, where x is the spatial variable and t 
is time. The class of solutions examined in this paper is distinct from these and is, when 
applicable, simpler to use. Some of the simpler members of this class have already been 
described by Carslaw and Jaeger (1959), Pattle (1959), Boyer (1962), Ames (1966), 
Zel’dovich and Raizer (1967) and Anisimov (1972), but consideration of the class as a 
whole has not been presented, possibly due to the difficulties in performing the 
necessary numerical integration. In this paper we show how this difficulty may be simply 
overcome. 

In this paper we develop the solutions for the particular case of the transfer of heat in 
an isotropic medium. However, the method is, of course, more general, and is 
applicable to any problem of diffusion: particle diffusion (Tuck 1976), radiative 
diffusion (Zel’dovich and Raizer 1967), plasma wave diffusion (Lonngren et a1 1974) or 
transmission line theory (Boyer 1962). 
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We shall consider the time-dependent propagation of heat in uniform media, under 
conditions of one-dimensional symmetry, with boundary conditions which vary as a 
simple power of time. Provided the initial temperature of the medium is very small we 
shall show that these problems can be cast into a self-similar form, and shall demon- 
strate how the exact solution may be obtained. 

The conduction of heat in a uniform medium, whose properties vary non-linearly 
with temperature, is most simply studied by writing the equation of heat transport in the 
form: 

d E  - = div q 
a t  

q = - K  grad E 

where K is a thermal conduction coefficient, and E ,  the specific internal energy, is a 
function of temperature alone, since the medium is uniform in density. We shall assume 
that the thermal conductivity varies as a simple power of the internal energy (Zel'dovich 
and Raizer 1967): 

K = ad'. (2) 

2. The existence of self-similar solutions 

Since we have reduced the problem to only one spatial variable, say x,  there are two 
independent variables only, namely time t and x ,  and one dependent variable E .  The 
problem is characterized by the parameter a from equation (2) and the initial and 
boundary values. In general we should specify an initial energy eo for the medium, 
however, if the initial temperature is very small we may with little error take eo = 0. The 
boundary values must be characterized on the boundary surface, and may, as is usual 
with diffusion problems, specify either the parameter or the flux at the surface, in the 
form S ( t )  = sof ( t /7 ) ,  containing two parameters So and 7. In the special case that S ( t )  is 
a simple power of time: 

S(t )  = Sot" (3) 
there is only one characteristic parameter So. 

We may now use dimensional analysis to investigate the functional form of E ( X ,  t ) .  In 
general we have five variables, E ,  x ,  t, a and So. The rank of the dimensional matrix is 
three; therefore the number of dimensionless products in the complete set is two 
(Langhaar 195 1). Hence by Buckingham's theorem 

4 x 7  t )  = h ( t ) f ( x / g ( t ) )  

5 = x / g ( t ) .  

(4) 
and thus the problem is cast into a self-similar form with variable 

Dimensional analysis will also enable us to find the functional forms of g( t )  and h( t )  
for particular cases. In order to illustrate the calculation of f ( 6 )  we shall consider in 
detail only the planar one-dimensional problem, where S ( t )  is the energy flux incident 
on the surface x = 0 of a medium occupying the half-space x > 0. In this case 

a 
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3. Separation of the differential equation 

The existence of this self-similar solution implies that the differential equation ( 1 )  is 
separable, indeed through equation ( 5 )  we could specify the similarity variables. 
However, it is more convenient for our purpose to consider the separation directly: thus 
we put 

E = W)f (5) 6 = x/g(t). (6) 

It is readily shown that a sufficient condition that the solution be separable is: 

where (Y and P are constants. The values of a and /3 are found by matching the solution 
to the boundary condition in either of the forms: 

or 

sotmt1 lom E dx = lo' Sotm dt = - m + l *  

In general it is simpler to use the first form, although the second allows the inclusion of 
instantaneous heating within this formalism, as we show later. Hence: 

2 m + l  )"a] l / ( n m + n + l )  

a =  
n m + n + l  A ( n + 2 )  aB 

where A is the separation constant and 

2m+1 
( n  +2)(m + 1 )  

BC. f n - 1  df = - B  l f d ( =  
d( C=O 

(9) 

Since A has the dimensions of a it is convenient to introduce the dimensionless form 
C= a / A .  Hence we find: 

and 

in agreement with the dimensional analysis (5 ) .  
The constants B and Care  arbitrary, and it is easy to show that x and E are invariants 

under transformations of B and C. In common with previous workers (Zel'dovich and 
Raizer 1967) we may put B = 1 and C = (n + 2)/(2m + 1) but for the present prefer to 
leave both B and C arbitrary. 
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4. The characteristic profile 

The characteristic thermal profile is determined by the function f ( 5 )  which satisfies the 
differential equation obtained by separating (1): 

subject to the boundary conditions given by (l0)t  and f + O  as [-*a. This latter 
boundary condition presents some problems. If we examine the form of (13) near f = 0 
we find that: 

where f ( T o )  = 0. The solution of f satisfying (13) and the boundary conditions is thus 
given by the integral of (13) for 5st0, and zero thereafter. This behaviour with a finite 
thermal front at 5 = to is characteristic of non-linear thermal conduction problems 
(Zel'dovich and Raizer 1967). 

Equation (14) has a simple physical interpretation. Near the thermal front, thermal 
conduction predominately supplies heat to maintain the motion of the front, so that: 

- = - v - = -  a€ 
a ( a .@) at ax ax 

where U is the velocity of the front: 

Equation (14) is obtained directly since g ( t ) g ( t ) / h " ( t )  = (nm +n + l)a/(2m + 1)C. 
If n > 1, all solutions which cut the 5 axis do so normally. Since f must be zero at 

some point, the required solution is the one which satisfies both (10) and (14). 
Alternatively, if we recall that B is arbitrary and simply a scale factor, we may regard 
equation (14) as the boundary condition for some fixed value of to (say to = 1) and 
regard B as determined by equation (10) and the solution curve, at the end of 
integration: the correct scaling is then obtained either by using this value of B in 
equations (1 1) and (12), or appropriately adjusting the value of to. Thus we reduce the 
problem to an integral of a second-order differential equation (13) with the one-point 
boundary condition: 

n- ldf  n m + n + l  
f -+- 

d5 (2m + l)C '" 5 = 50: f =o;  
When 0 < n < 1 all solutions which meet the 5 axis do so tangentially. We may also 

use the same argument as for n > 1 to reduce the problem to a one-point boundary 
condition problem with the same boundary conditions (1 7) as before. 

These integrals are most easily evaluated in terms of the function y =f" by standard 
numerical methods. Figure 1 shows profiles for the typical cases: n = 0.5, n = 2.5 
(electron thermal conduction) and n = 5 .5  (a typical value for radiative transport). 

t The two conditions are not independent as is shown by integrating (13). Thus only one can be used as a 
boundary condition. 
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Figure 1. The characteristic profile function for typical values of m (-0.5, 0, 1.0, 2.0, 5.0 
and 10.0) and: (a) n = 0.5, (6) n = 2.5, (c) n = 5.5. The value of C= (n + 2)/(2m + 1) and 
to= 1. 

5. Instantaneous heat deposition ( m  = -1) 

As the case of instantaneous deposition is treated by Pattle (1959), Boyer (1962) and 
hl’dovich and Raizer (1967), in detail, our purpose is solely to show that it is one of this 
class of self-similar solutions. As m -f -1, we see that the right-hand side of equation 
(8) diverges. However, if we consider the limiting procedure: 

lim So-. Q(m + 1) B+b(m + 1 ) + 0  
m--1 

we observe from equation (8) that the total energy has a constant value Q. In this case 
the differential equation (13) reduces to: 

which may be integrated directly. The boundary condition (16) or (17) used earlier is 
not applicable in this case, as it appears as the first integral of the differential equation 
and is therefore valid for all solutions of (13). Instead we may use the total energy form 
(lo), which we rejected before, as in this case it is not an integral of the differential 
equation. The result of this calculation is given more generally in equations (27) and 
(28). 
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5.1. The case m = -f 
We can treat the case m = -4, where 2m + 1 + 0, in a similar manner to that of m = -1, 
by introducing the non-zero variable 

c = (2m + 1)C 

in place of C. 

5.2. The case nm = 1 

When the product nm is unity, equation (13) has the simple analytic solution: 

5.3. The case n = 0 

When the thermal conductivity is constant the point to tends to infinity, and the 
numerical integration technique described earlier is not suitable. We therefore present 
an analytical solution for this case. When m is integral or half-integral there is a well 
known solution in terms of the repeated integrals of the complementary error function 
(Carslaw and Jaeger 1959) and the similarity variable 5 is given by the Boltzmann 
transformation. This solution may be readily generalized to include arbitrary values of 
m by the use of the function I m ( x )  whose properties are discussed in the appendix. In 
terms of this function the solution for f(5) is 

f(5) = ~'12m+1(5/J(2~)) (23) 

where c = (2m + l)C and B' is arbitrary. From the properties of I, we obtain: 

6. Extension to other geometries 

We may easily generalize the results to consider cylindrical and spherical geometries. 
Thus we consider in the cylindrical case a circular sector of 1 rad angle heated along its 
axis, and in the spherical case a cone of 1 sr solid angle heated at its apex. In this case we 
find that f is defined by 
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where 

also 

The functions 5 and h( t )  are: 

and 

where v is the geometrical factor (0, planar; 1, cylindrical; 2, spherical). The boundary 
condition on f at 00, namely f + 0 as 5 +a, is easily shown to reduce to (16). 

We must, however, consider the behaviour of solutions in the neighbourhood of 
5 = 0 in some detail. Thus expanding f(5) near 5 = 0 in the power series: 

and substituting in (13a) we obtain: 

5 f O + f l (  1- m n + n + 1 ) 5 + .  2m + 1 - . . . (27) 

Hence solutions to (13a) only exist if: 

Clearly the first of these is inconsistent with the boundary conditions, and the third 
represents the planar case already discussed. The case f l  = 0, corresponding to B = 0, 
only has a non-zero solution if m = - 1 ,  and therefore corresponds to the case of 
instantaneous energy deposition as discussed before. 

The absence of solutions with a finite heat flux at the origin in the cylindrically or 
spherically symmetric cases is easily seen by considering the behaviour of the total heat 
flux at the origin ~f deldr = S,  or equation ( l o a )  which requires 

in order to remove the applied heat flux at the origin. 

6.1. Instantaneous energy deposition 

As we have shown, the only solution if v f 0, occurs if m = - 1  when 
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where the position of the thermal front is given by 

This solution has been previously discussed by Pattle (1959) and Boyer (1962). 

7. Surface temperature varying with time 

Thus far we have considered the case where the flux at the surface x = 0 is specified as a 
function of time. As mentioned earlier we can also find self-similar solutions when 
the surface temperature is specified as a simple power of time 

(32) I 
E = E O t .  

In this case we may carry out a similar analysis as before to derive the similarity 
form. However, the solution is most easily obtained directly from equations (1 1) and 
(12) or ( l l a )  and (12a), by noting that in these cases the surface temperature varies as 
the (2m + 1 - v)/[n(v + 1) + 21th power of time. Hence the solution when the surface 
temperature is specified is directly obtained from ( l la )  and (12a) by the substitution 

I = (2m + 1- v ) / [ n ( v +  1)+2] (33)  
and is 

X 

[ (u/IC)(E,/B) t(m'+ ''1 1'2 

where 

B = f(0). 

(34) 

(35)  

The functionf is, of course, simply that given by (13a) with the appropriate substitution 
(33) for m in terms of Z, and we have retained the arbitrary constants B and C. 

We therefore conclude that unless m = -1, i.e. 1 = -(v + l)/[n(v+ l)+2], there are 
no solutions in the cylindrical or spherical cases. 

We now give some simple examples of this substitution. 

(1) I = -(v + l)/[n(v + 1) + 21. In this case the total heat energy is a constant, m = -1, 
and the solution is given by (30) with: 

2(v+  l)(-C)B" 
n 6; = 

This solution was previously given by Ames (1968). 

(2) nl = 1. In this case only planar solutions occur and 1 = m. The solution is given by 
(21) with 

CB s : = 7  

(3 )  n = 0. In this case also only planar solutions need be considered when 21 = 2m + 1. 
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Hence the solution is given by a comparison with (23): 

f(5) = B12l(t/24lC)) (23a) 
where 

~ = 2 ~ ' r ( i + z )  

and I , ( ( )  is the function described in the appendix. In the case that I is integral or 
half-integral IZ1(() is a repeated integral or the error function and the solution reduces 
to that discussed by Carslaw and Jaeger (1959). 

8. Conclusions 

We have shown that there exists a class of self-similar solutions to the one-dimensional 
non-linear heat conduction equation, when the thermal conductivity can be expressed 
as a simple power of the specific internal energy. These solutions may be applied to the 
case where the medium is initially very cold, and the applied flux (or surface tempera- 
ture) varies on a simple power of time: the solutions being valid for values of the powers 
n 3 0 and m 3 -1. We have also demonstrated how by a simple application of the 
scaling factors B and C, the complete solution may be easily evaluated. 

These similarity solutions were originally developed to use as test problems for 
thermal conduction routines in general laser interaction codes. They have proved very 
suitable for this application, and it is believed that the solutions with increasing energy 
flux provide a more realistic test than the simpler instantaneous energy deposition 
solution used hitherto. 

However, these solutions are of some interest in laser-plasma interaction studies. It 
is well known that during the early stages of laser irradiation of solid targets non-linear 
thermal conduction is the dominant process, whilst the thermal front is ahead of the 
head of the rarefaction wave. In the past this behaviour has been studied by means of 
the instantaneous energy deposition solution (Babuel-Peyrissac et al 1969, Caruso and 
Gratton 1969, Saltzmann 1973), which is suitable in applications with very short (of the 
order of picosecond) laser pulses. With the present interest in studies with pulses of 
order 100 ps, this approximation is no longer valid, and the present solutions are more 
appropriate. Under these conditions we are generally interested in the cases n b 2, so 
that the energy profile is relatively square. Hence the sound speed is approximately: 

c, = yzp (36) 

where y and p are constants and the mean specific internal energy 

Hence we can calculate the time to at which the rarefaction wave overtakes the thermal 
front: 

As this general result is easily obtained but rather complicated in form, we shall not 
present it here. 
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Appendix. The function I&) 

We seek to find the function Im(x)  which satisfies the differential equation: 

d21m dIm -+2x--2mIm = O  
dx ' dx 

subject to the boundary condition Z m ( x )  -* 0 as x + CO. There is a simple relationship 
amongst the solutions of this equation, namely if 

and 

I ,  - 2  - 2x1,- - 2mZm = 0 (A.3) 

then clearly Zm is a solution of (A.1). 
Consider the series 

It is easily seen that this function satisfies (A.l)-(A.3). To investigate the behaviour as 
x +CO we note that 

1 X 
I,  = M ( - $ m , i ,  - x 2 ) -  M ( - ( m  - 1 ) / 2 , $ ,  - x 2 )  (AS) 2"r(1 + $ m )  2 m - * ~ ( ( ~  + 11/21 

where we have used Kummer's transformation for the confluent hypergeometric 
functions M(a,  b, x )  (Slater 1960). We may now cast this sum in the form of a 
Mellin-Barnes integral: 

where the path of integration is chosen to include the poles at s = 0, 1 ,2 ,  . . . but exclude 
those at s = - ( m  + 1)/2, -(m +3)/2, . . . . Hence by deforming the path of integration 
to include only the poles s = - (m + 1 +2v)/2 we obtain the asymptotic form: 

Hence I m ( x ) + O  as x +m,  satisfying the boundary condition on I,, and also on f (5)  
(equation (14)). 

These formulae represent a generalization of the well known results for the repeated 
integral of the error function. Thus if m is an integer it is easily seen that 

1, ( x )  = i" erfc(x) m integral. (A. 10) 



Non-linear diffusion 593 

References 

Ames W F 1965 Indust. Eng. Chem., Fund. 4 72-6 
- 1966 Non-linear Partial Differential Equations in Engineering vol. 1 (New York: Academic) chap. 4 
- 1968 Non-linear Ordinary DifferentialEquations in Transport Processes (New York: Academic) chap. 3, 

- 1972 Non-linear Partial Differential Equations in Engineering vol. 2 (New York: Academic) chap. 2, 

Anisimov S I 1971 JETPLett. 12 287-9 
Babuel-Peyrissac J P, Fauquignon C and Floux F 1969 Phys. Lett. 30A 290-1 
Boyer R N 1962 J. Math. & Phys. 41 42-6 
Carslaw H S and Jaeger J C 1959 The Conduction of Heat in Solids (London: Oxford University Press) chap. 

Caruso A and Gratton R 1969 Plasma Phys. 11 839-47 
Crank J 1975 The Mathematics of Diffusion (London: Oxford University Press) chap. 7, pp 104-37 
Langhaar H L 1951 Dimensional Analysis and the Theory of Models (New York: Wiley) 
Lonngren K E, Ames W F, Hirose A and Thomas J 1974 Phys. Fluids 17 1919 
Pattle R E 1959 Q. J. Mech. Appl. Math. 12 407-9 
Pert G J 1974 Plasma Phys. 16 1019-33 
Philip J R 1960 Aust. J. Phys. 13 1-20 
Saltzmann H 1973 J. Appl. Phys. 44 113-24 
Slater L J 1960 The Confluent Hypogeometic Function (Cambridge: Cambridge University Press) 
Tuck B 1976 J. Phys. D :  Appl .  Phys. 9 1559-69 
Zel'dovich Ya B and Raizer Yu P 1967 Physics of Shock Waves and High Temperature Hydrodynamic 

pp 127-32 

pp 127-30 

2, PP 62-4 

Phenomena (New York: Academic Press) chap. 10, pp 652-84 


